
Journal of Computational Physics 190 (2003) 184–200

www.elsevier.com/locate/jcp
A new efficient method for density functional
theory calculations of inhomogeneous fluids

Mark P. Sears *, Laura J.D. Frink

Sandia National Laboratories, Albuquerque, NM 87185, USA

Received 29 May 2002; received in revised form 21 April 2003; accepted 16 May 2003
Abstract

The accurate computation of the effects of solvation on chemical systems can be done using density functional

theories (DFT) for inhomogeneous multicomponent fluids. The DFT models of interest are non-local theories which

accurately treat hard-sphere fluid mixtures; attractive inter-particle potentials (Lennard–Jones) are added as pertur-

bations. In this paper, we develop and demonstrate a new efficient method for an accurate non-local DFT. The method

described here differs from previous work in the use of fast fourier transform (FFT) methods to carry out the con-

volutions. As with our previous real space work (J. Comput. Phys. 159(2) (2000) 407, 425), we demonstrate that the

Fourier space approach can be solved with a Newton–GMRES approach; however, we now employ a very efficient

matrix-free algorithm. A simple but effective preconditioner is presented. The method is demonstrated with calculations

performed for one-, two-, and three-dimensional systems, including problems with single and multicomponent fluids.

Timing comparisons with previous implementations are given.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Density functional theories (DFTs) have been widely applied to study the behavior of confined fluids and

fluids near interfaces [6]. Until very recently most of these studies have used very simple surfaces with

substantial symmetry and uniform properties. Examples of simple confining geometries include smooth

planar walls, cylindrical pores, and spherical cavities, which can all be reduced to one-dimensional prob-

lems. More recently, studies on patterned surfaces have begun to appear in the literature; however, most of
these use simplified functionals or have been limited to two-dimensional problems [9–11]. We are interested

in applying accurate non-local DFTs to complex systems such as solvated proteins. In this case the

chemistry and geometry of the surface of interest is non-uniform. As a result, a full three-dimensional

solution is required.
*Corresponding author.

E-mail addresses: mpsears@sandia.gov (M.P. Sears), ljfrink@sandia.gov (L.J.D. Frink).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00270-5

mail to: mpsears@sandia.gov

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 185
We have previously developed a real space code [1,2] that is based on a form of DFT originally derived

by Rosenfeld [12]. That code used massively parallel computers and a variety of specialized algorithms to

speed up computation of a Jacobian matrix based on the rather long-range integration stencils that result

from the non-local density functionals of interest [1,2]. While a variety of novel algorithms were imple-

mented to make three-dimensional protein systems accessible, the computational requirements are never-

theless substantial.

In this paper, we detail a new Fourier space based approach we have developed for solving the DFTs of

interest. As with our previous work, we use a Newton solver for robustness and quadratic convergence
guarantees. In contrast to our previous work, we have implemented a matrix-free GMRES approach.

Below, we discuss the numerical implementation of the Fourier space method, compare Fourier space

and real space methods, and demonstrate the power of the Fourier space approach for solving large three-

dimensional problems.
2. The free energy functional

We briefly review the systems of equations solved in the DFT model of a fluid. The basic approach of the

model is to consider a functional which accurately represents a fluid composed of a mixture of hard-sphere

components and then to add attractive potentials as perturbations. The solution to the model is given as a

variational minimum of the grand potential X, which is a functional of the density q, temperature T , and
chemical potential l

X qiðrÞ; T ; l½ � ¼ Fid qiðrÞ; T ; l½ � þ Fhs qiðrÞ½ � þ Fu qiðrÞ½ � þ
Z
d3r

X
i

qiðrÞ V ext
i ðrÞ

�
� li

�
; ð1Þ

where the subscript i defines the fluid component and V ext
i ðrÞ is a one-body external field. The inhomo-

geneity of the fluid density is a direct result of the spatial variation of the external field.

The first three terms in Eq. (1) are the the ideal gas, hard sphere, and two-body perturbative contri-

butions to the free energy, respectively. The ideal gas contribution is

Fid ¼ kBT
Z
d3r

X
i

qi ln qiK
3
i

� ��
� 1

�
; ð2Þ

where K is the de Broglie length. This expression is invariant under a simultaneous shift in the chemical
potential and a rescaling of K, and by doing this we can drop K out of the problem. Either the chemical

potential or the bulk density can be used to define the bulk fluid state point.

Rosenfeld [12] form for the hard-sphere excess free energy is given as a local functional of non-local

(weighted) densities

Fhs ¼
Z
d3rUðncÞ; ð3Þ

where the weighted densities nc are given by the convolutions

ncðrÞ ¼
X
i

Z
d3r0 xicðr� r0Þqi r

0� �
: ð4Þ

The weight functions xic can be either scalar or vector. They depend only on so-called fundamental

measures of the hard-sphere particles in the fluid: the volume, surface area, and radius of the particles. The
vector weight functions probe the density gradient as well. Note that, in this paper we use lower case Italic

186 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
indices for density components and lower case Greek indices to identify weight functions. The detailed form

for U and the weight functions are presented in Appendix A, as is the fast fourier transform (FFT) method

for performing convolutions.

The two-body perturbative contribution is taken to be a strict mean field approximation

Fu ¼
1

2

Z Z
d3rd3r0

X
ij

qiðrÞqjðr0ÞUijðr� r0Þ; ð5Þ

where the attractive potential U is described in more detail in Appendix C.
3. A matrix-free Newtons method

We now describe a solution scheme to find the desired stationary point of the grand potential functional.

We define for each independent field f (i.e., density component) a residual field rf given by the functional
equation

rf ¼
dX
df

: ð6Þ

Clearly, a stationary point is defined by rf ¼ 0 at each point in space for all the fields. In addition to solving

these residual equations, boundary conditions must be applied. In contrast to our real space method [1],

where implementation of a variety of boundary conditions (periodic, reflective, homogeneous, and inho-

mogeneous) was straightforward, the FFT based convolution method presented here is inherently periodic,
and without modification can only handle problems with periodic boundary conditions.

A Picard method could be implemented directly from the residual defined above. The residual for

component i can be separated into ideal gas and excess parts

ri ¼ ridi þ rexi ; ð7Þ

and at the solution where ri ¼ 0, we have

qiðrÞ ¼ exp

�
� V ext

i ðrÞ � li þ rexi ðrÞ
kT

�
: ð8Þ

To implement the Picard scheme we simply iterate this equation until self consistency is achieived. In

practice the convergence rate can be very slow, depending on the specific physics included in the functional

and the state point of interest. It has been demonstrated that the convergence of a Newton�s method is
much faster, but this approach is costly due to the need for computing the Jacobian matrix [1].

The Jacobian of the system of equations defined by Eq. (6) is given by the functional derivatives

Jff 0 ¼
drf
df 0 ¼

d2X
df df 0 : ð9Þ

This quantity is defined for each pair of fields f , f 0 and each pair of points in space x, x0. In the following we
treat the spatial coordinates implicitly.

Suppose we are close to a solution, then we can write each field f as the solution fI plus a small error �f
and then to second order, we have

rf f½ � ¼ rf ½fI� þ
X
f 0

Jff 0�f 0 ; ð10Þ

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 187
but of course rf ½fI� ¼ 0 and so �f is the solution to

rf ½f � ¼
X
f 0

Jff 0�f 0 ; ð11Þ

and the Newton iteration procedure may be written as the replacement of f by f � �f .
We describe Newton�s iteration in this way to point out that the objective is to solve the above equation

for the change in the fields. The inverse Jacobian operator is not needed (may not even be well defined), and

the Jacobian itself is not required. All that is required is a method for solving the above linear system. In
this paper, we show that a matrix-free method works quite well: such a method solves the equation using an

operational definition of the Jacobian without storing any part of J . In other words we assume only the
ability to compute the effect of the Jacobian operating on a set of fields. The Jacobian operator can be used

directly in an iterative scheme such as GMRES.

As we show in detail below, a powerful result emerges from this matrix-free approach: the computation

of the operational definition of the Jacobian involves the same amount of work as the computation of the

residual, within a small constant factor! This means that Newton�s method can be implemented with es-
sentially the same computational effort as a Picard iteration with the potential of converging much more
quickly.

The method implemented in our real space code [1] contrasts with the current algorithm primarily in that

the real space code computes and saves elements of the Jacobian matrix in a sparse format. The compu-

tation is done with finite element techniques, i.e., using finite element shape functions, and the assembled

matrix elements therefore form a nodal finite difference stencil. The Jacobian equation is then solved by a

sparse matrix package [7] which has a number of solver and preconditioning options. At this level both

codes solve the same Newton iteration and as we show later the convergence of the codes with respect to

Newton iteration is essentially the same for both. At the lower level the real space code computes and saves
a sparse matrix and the matrix vector multiplications are performed by the sparse matrix package, while the

matrix-free FFT method implements the matrix–vector multiplications needed for a sparse solve directly in

terms of the physical operators. For a true comparison of either method with the Picard approach, we

should compare total the number of matrix–vector multiplications (however performed) with the number of

Picard iterations.

3.1. Overview of the algorithm

The algorithm basically consists of an outer loop which is the Newton�s iteration. Inside this loop there
are three steps: computing the residual, calling the linear solver, and finally updating the solution; this loop

is repeated until the residual norm is below some tolerance or a maximum number of steps is reached. The

linear solver in turn computes the Jacobian operator some number of times in order to solve the above
equation. In the remainder of this section we outline the method for computing the residual and then show

the related techniques used to compute the Jacobian operator.

3.2. Computing the residuals

In this paper, there is one residual field for each density component since we do not include electrostatics

or other fields. If we did add electrostatics then there would be a residual field corresponding to the

electrostatic potential and perhaps additional fields and residuals corresponding to polarization, but further

discussion is beyond the scope of this paper.

Following the development above, we discuss different physical contributions to the residual indepen-

dently with the understanding that they will be summed. We make the assumption that the physical fields,

potentials, and residuals are described on a simple regular real space mesh, which is used because it makes

188 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
the Fourier transform algorithms very fast. On the other hand, this choice precludes the use of a mesh

which is graded or adaptive in regions where the solution is more or less rapidly varying. The Fourier mesh

described below is only present in order to compute convolutions quickly.

The ideal gas contribution to the residual for density component i is

kT lnðqiðrÞÞ þ V ext
i ðrÞ � li; ð12Þ

which can be evaluated directly point by point on the real-space mesh.

The functional derivative of the Rosenfeld form for the hard-sphere excess free energy is

dFhs
dqi

����
r

¼
Z
d3r0

X
c

oU
onc

����
r0

dncðr0Þ
dqiðrÞ

¼
Z
d3r0

X
c

oU
onc

����
r0
xicðr� r0Þ: ð13Þ

Note the order of r, r0 in this expression compared with Eq. (4), which is just a convolution of oU=ona with

the weight functions xic. For even (i.e., scalar) weight functions the order is irrelevant, but for the vector

weight functions the change in order results in a change of sign. We can take this into account during the

process of convolution with the FFT method by taking the complex conjugate of the weight function in

Fourier space when the residual is constructed from oU=ona. This has no effect on the even weight func-

tions, whose FT is real, and changes the sign of the odd weight functions, whose FT is imaginary. Note that

the total amount of work required to compute the residual is Nw þ Nc convolutions, where Nw is the number
of weight functions and Nc is the number of density components.
Finally, the contribution to the residual of the attractive perturbations is

dFu
dqi

����
r

¼
Z
d3r0

X
j

qjðr0ÞUijðr� r0Þ: ð14Þ

Note that this is a convolution of the potential function U with the density, and can easily be treated with

the FFT method described in Appendix B.

3.3. Computing the operational Jacobian

We now show how to compute the operational definition of the Jacobian, that is the action of the

Jacobian on a field. In more detail we are computing the quantities

yiðrÞ ¼
Z
d3r0

X
j

Jijðr; r0Þxjðr0Þ ¼
Z
d3r0

X
j

d2X
dqiðrÞdqjðr0Þ

xjðr0Þ: ð15Þ

For some input field x, which will come from the iterative scheme that we use to solve J� ¼ r. We do this
without constructing or saving any part of J , thus the method is matrix-free.
The ideal gas contribution to yiðrÞ is simply evaluated pointwise as

kT
qiðrÞ

xiðrÞ: ð16Þ

In order to write down the hard-sphere contribution to the operational Jacobian we define

UabðrÞ ¼
o2U

onaonb

����
r

: ð17Þ

Expressions for UabðrÞ are given in Appendix A. Then the hard-sphere contribution to the Jacobian

becomes

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 189
d2Fhs
dqidqj

����
r;r0

¼
Z
d3r00

X
ab

Uabðr00Þ
dnaðr00Þ
dqiðrÞ

dnbðr00Þ
dqjðr0Þ

ð18Þ
¼
Z
d3r00

X
ab

Uabðr00Þxiaðr00 � rÞxjbðr00 � r0Þ; ð19Þ

where the second derivative of U only depends on a single coordinate r00, because U is a local function of the
weighted densities.

Efficient computation of the hard-sphere contribution to the operational Jacobian relies on noticing that

it can be evaluated via two successive sets of convolutions. To this end we define two intermediate

quantities. The first is a convolution of the input field x with the weight functions x

tbðr00Þ ¼
Z
d3r0

X
j

xjbðr00 � r0Þxjðr0Þ: ð20Þ

We also define

zaðr00Þ ¼
X

b

o2U
onaonb

����
r00
tbðr00Þ: ð21Þ

We now see that then we have the hard-sphere contribution to yiðrÞ given as a convolution of zaZ
d3r00

X
a

xiaðr00 � rÞzaðr00Þ: ð22Þ

Thus yðrÞ is computed by first evaluating the convolutions in Eq. (20) followed by a second set of con-
volutions in Eq. (22). Each requires Nc þ Nw individual convolutions for a total of 2Nc þ 2Nw. Note that the
order of the variables in the weight functions is reversed in the two convolutions.

We compute and save the quantities UabðrÞ at each location in the real-space mesh once at the beginning
of each Newton�s iteration. The cost of computing the hard-sphere contribution to the Jacobian operator is
therefore dominated by the two convolutions described here. The total number of FFT operations is

2Nw þ 2Nc per Jacobian operator computation, or twice the number of FFT operations as were needed for

the residual computation. Note also that when Nc is small the cost is dominated by Nw, so the cost of solving

for mixtures with a small number of components is hardly larger than that of solving for a single

component.
Finally, the attractive contribution to the operational Jacobian is simply given by the convolution of the

field x with the interparticle potential U . This becomes a term of the form

yiðrÞ ¼
Z
d3r0

X
j

Uijðr� r0Þxjðr0Þ: ð23Þ

3.4. Iterative solution with GMRES and preconditioning

GMRES [14] is a powerful method for solving large systems of linear equations iteratively. The method

only requires an implementation of the matrix–vector product, which we provided above. Since the Ja-

cobian is defined in a way that explicitly reveals the fact that it is symmetric, we might think that a simpler

method such as conjugate gradients (CG) would be sufficient. CG requires that the matrix also be positive

definite, however, and this is not so easy to demonstrate. GMRES has a great deal of robustness that CG

190 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
lacks, and in addition we have intentions to modify this program for situations where the equations are not

symmetric, for example, when we treat steady-state transport [4] or add a state-following algorithm that

accesses unstable parts of the phase diagram [3].

GMRES and CG are both Krylov-space iterative methods. In GMRES, as vectors are accumulated they

are orthogonalized against all the previously accumulated vectors; this provides much of the stability and

robustness relative to CG, which uses a three term recursion relation to implicitly maintain orthogonality.

The memory required for GMRES is NðS þ 2Þ, where N is the number of independent variables and S is the
maximum number of iterations. The method can be restarted, so a fixed number can be chosen for S.
Nevertheless, this storage can dominate the required storage for the problem as a whole. Beyond this

description we treat GMRES as a black box and refer the interested reader to the published literature on

the method.

Like other Krylov-space iterative methods, GMRES can benefit greatly from a good preconditioner. We

consider the development of preconditioners to be an open problem for this application. Of course, many of

the preconditioners that are available for finite element methods rely on the existence of explicit matrix

elements, which our matrix-free method does not make available. So these preconditioners cannot be used

and we are forced to look for physics-based preconditioners.
The approach currently used in the code is very simple. A class of preconditioners is defined by building

an approximate inverse to J that is easily computed. If M is such an inverse then we can solve JMM�1x ¼ y
instead of Jx ¼ y, by solving the modified equation JMx0 ¼ y and then computing x ¼ Mx0. Here we con-
struct a local function (diagonal matrix) that interpolates between the ideal gas limit and the bulk state

point. The preconditioner is

~xxi ¼ Mijxj; ð24Þ

where for a single component

M ¼ q
J0 � qðkT=q0Þ þ kT

ð25Þ

and J0 is the Jacobian for a constant-density fluid at the bulk state point q0. This preconditioner inter-
polates between the bulk fluid state point far from any wall to the ideal gas behavior where the density is

small.

A better preconditioner might involve solving a multilevel problem. In this case we would solve the DFT
problem on a coarse mesh and then interpolate that solution to the fine mesh. Note that we can do a very

good job of interpolation using the FFT method, and if the coarse mesh has twice the spacing then the

effort needed to solve on the coarse mesh is 1/8 that on the fine mesh.
4. Example problems

In this section we give results for several simple one-, two-, and three-dimensional cases. We begin with
sample problems where the boundary condition is that of a hard wall, hard cylinder, or hard sphere. A

general hard surface (defined as the boundary of some volume) boundary condition can be defined by an

external field with

V ðrÞ ¼ 1 inside;
0 outside:

�
ð26Þ

Note that for all grid points or nodes inside the volume, where V ðrÞ ¼ 1 the density qðrÞ can be rigorously
set to zero. However, when integrating (e.g., computing non-local densities) through the discontinuity

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 191
defined by the surface one should include contributions from elements on the fluid side of the interface only

in order to predict surface densities that will satisfy known sum rules (e.g.,
P

i qi ¼ bP). If one allows for
interpolation between the density at the surface node and the density for the first node inside the volume

then the sum rules will not be satisfied except in the limit that the grid spacing goes to zero. However, all

other points in the density distribution will be affected very little. Since we are ultimately interested in

systems described by continuous potentials, we have elected not to implement the required code for ac-

curately dealing with true hard potentials in the Fourier algorithm (see [1] for more details). Therefore, the

real space results shown below for comparison were done allowing a linear interpolation between the
surface nodes of the mesh and the first element inside the volume.

Figs. 1–3 present a direct comparison of the algorithm presented in this paper with our previous finite

element real space implementation. These figures show the fluid density distribution in a periodic array of

planar walls, parallel cylinders, and spheres, respectively. In all cases the agreement is extremely good. The

bulk state of the fluid is defined by a bulk density of q ¼ :8785 corresponding to a packing fraction of
g ¼ :46, which is the same state point used in [8]. The wall thickness (radius) is 1r. For the hard cylinder
and hard sphere cases we plot the density along a line extending radially from the surface. The problems

were run in a periodic volume of size L ¼ 12:8r for the one- and two-dimensional problems and L ¼ 6:4r
for the three-dimensional problem. The mesh cell size for the hard wall and hard cylinder cases is h ¼ :1r
and is doubled for the sphere case. The points are from the FFT based calculations and the lines from our

finite element calculations; the results in all three cases are almost identical. The inset to Fig. 2 shows a

contour plot of the density around the cylinder. This contour plot shows that the staircase representation of

the cylinder does not induce significant staircase artifacts in the computed density. Rather, uniform cy-

lindrical density bands are observed.

To further illustrate applications of our new algorithm we include three additional one-dimensional

cases. The first shows an example of a two component hard-sphere fluid near a hard wall (see Fig. 4). The
bulk state is chosen with the bulk densities of (.0260, .0104) for components with hard-sphere radii of (.5,

1.5), which regenerates the results of [13].

Fig. 5 shows a calculation of a hard-sphere fluid at a Lennard–Jones 9-3 wall, which can be compared

with [8]. Details of the wall potential are described in Appendix C. Note the large peak next to the wall with
Fig. 1. Density profile at a hard wall. The bulk state is q ¼ :8785 (packing fraction .46).

Fig. 2. Density profile at a hard cylinder. State is same as Fig. 1.

Fig. 3. Density profile around a hard sphere. State is same as Fig. 1.

192 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
a very low minimum next to it. The large peak corresponds to a monolayer of fluid lying in the minimum of

the 9-3 potential.

Fig. 6 is the most interesting case. We show what happens when a relatively high density fluid is in

contact with a Lennard–Jones wall. In this case the fluid is described by the hard-sphere terms as well as a

perturbative Lennard–Jones interaction and the state point is chosen to lie in the liquid regime. The bulk

density is set to .75 in units where the hard-sphere diameter is 1. The fluid-wall interaction and the fluid–

fluid interaction potential are described in Appendix C. In this case large amplitude density oscillations are
seen that persist a long distance into the fluid, and again we see that the two codes yield identical results.

Fig. 4. Density profiles for hard-sphere mixture. Compare with [13] Fig. 2a. Bulk density of component 1 (hard-sphere radius .5) is

.0260 and bulk density of component 2 (hard-sphere radius 1.5) is .0104.

Fig. 5. Density profile for hard-sphere fluid at LJ 9-3 wall. Compare with [8] Fig. 3.

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 193
5. Convergence and performance

In this section we compare the convergence and performance of an implementation of the algorithm

described in this paper with that of our real space finite element code. Above we showed that the results of
the two codes are essentially identical, here we note that there are three main issues of convergence and

performance:

• Comparison of convergence of the two codes.

• Comparison of the speed (time to solution) of the two codes.

• Comparison of memory required by the two codes.

Fig. 6. Density profile for LJ fluid at LJ 9-3 wall. See Appendix C for details on wall and fluid interaction potentials.

194 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
Convergence of the two codes is very similar, as is shown in Fig. 7. This plot shows how the residual
norm changes as a function of Newton–GMRES iteration, showing the quadratic convergence expected for

this algorithm. The residual norm is defined by the expression

� ¼
Z
dV jrj2

� �1=2

; ð27Þ

where r is the residual field. One interesting feature is that the convergence rate improves with increasing
dimension. The apparent reason for this is that the curved walls lower the magnitude of the density os-

cillations in the solution; the effect can be seen by comparing the peak heights in Figs. 1–3. This means that

the fluid in these cases is everywhere closer to the bulk state and therefore convergence is improved. For the
Fig. 7. Convergence vs Newton–GMRES iteration for one-, two-, three-dimensional problems. See Figs. 1–3.

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 195
one-dimensional case convergence requires eight iterations, in two dimensions seven, and in the three-

dimensional case the algorithm reduces the residual norm by 10 orders of magnitude in only six iterations.

In all cases the initial guess for the solution is just a constant density equal to the bulk density outside the

wall and zero inside.

Although both codes use approximately the same number of Newton–GMRES iterations to solve the

problem, the speed of the two codes is markedly different. The primary difference in performance is due to

the following. In the finite element code the weight function convolutions are implemented as finite dif-

ference operators. Considering such an operator, we note that each weight function has a finite radius R, so
there are a number OðR3=h3Þ points in the finite difference operator in three dimensions, where h is the mesh
spacing. The work required to perform a convolution is therefore OðL3=h3Þ since there are L3 mesh points.
In comparison, the FFT method for performing the convolution is almost independent of the radius of the

weight functions, so the work in this case is OðL3Þ. Mesh refinement for the finite element code therefore has
a cost Oð1=h3Þ relative to the FFT method. For one dimension this relative cost is Oð1=hÞ and for two
dimensions the relative cost is Oð1=h2Þ.
Fig. 8 shows the relative performance of the two methods running on the same platform (Intel Pentium 4

at 1.3 GHz), for a scaled set of three-dimensional problems. We have plotted time per Newton iteration as a
function of the number of points in the mesh, N , and the scaling of the graph is logarithmic. Note that all
the algorithms would scale linearly with number of mesh points if the size of the system were increased.

However, when the number of points is increased by making the mesh more dense as in Fig. 8, there are

considerable differences between the algorithms. The performance of the FFT method is approximately

N 1:2, where the performance of the real space method is between N 2:2 and N 1:6 depending on the specific

algorithm applied. More specifically, the N 2:2 scaling is found for algorithms dominated by the Jacobian

computation while the N 1:6 scaling is found for algorithms dominated by the GMRES solve [5]. For

comparison, a scaling curve is also shown for the faster real space algorithm on 100 processors of the
CPlant commodity cluster at Sandia National Labs. Note that the CPlant processors are slower than the

Intel processors used for single processor timings by about a factor of 4. Fig. 8 clearly demonstrates that

our new matrix-free algorithms can be used to compute large Oð106Þ unknowns calculations on a single
processor workstation in a modest O(1 h) amount of time. When these new algorithms are parallelized and

further optimized we expect a further two orders of magnitude speedup.
Fig. 8. Performance scaling with respect to mesh density (fixed unit cell size) for a three-dimensional problem.

Table 1

Memory usage in gigabytes (GB)

h N � 106 RS1 (GB) FS (GB)

.2 0.26 1 .25

.1 2.10 70 2

.05 16.7 4500 16

196 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
Finally, Table 1 shows a comparison of the approximate memory in gigabytes (GB) required by the two

codes for a typical one-component fluid in a cubical box with side L ¼ 12:8r at various mesh densities (h in
units of r). This table compares the algorithm presented here (FS) with the RS1 algorithm in Fig. 8 for the

case of a hard-sphere fluid. Clearly, there is a very significant difference between the two codes with respect

to required memory.
6. Conclusions

We have presented an efficient algorithm for treating DFT in complex three-dimensional geometries.

The Newton–GMRES solution scheme is capable of solving the highly non-linear optimization problem

presented by the minimization of complex DFT model functionals in remarkably few iterations and with

quadratic convergence, as shown above. The development of good preconditioners for the solve is still an

open question. The efficient FFT based method of computing the residual and the Jacobian operator is
based on analysis of the physical operators. The method works without storing a matrix and is both faster

than the finite element method and uses significantly less memory.

We have shown that the new matrix-free algorithm accurately reproduces the results of our previous real

space finite element code as well as results from the literature. The new algorithm is thus a powerful technique

for the treatment of complex fluid mixtures in one-, two-, and three-dimensional inhomogeneous systems.
Appendix A. Rosenfeld functional

Here we give for reference the Rosenfeld functional for the excess hard-sphere free energy, its first and

second derivatives, the weight functions and their Fourier transforms.
For a fluid component with hard-sphere radius R there are four scalar and two vector weight functions,

or 10 weight functions altogether for each fluid component. These are

x0ðrÞ ¼
dðr � RÞ
4pR2

; x1ðrÞ ¼ Rx0ðrÞ; x2ðrÞ ¼ 4pR2x0ðrÞ; x3ðrÞ ¼ hðr � RÞ;

x1vðrÞ ¼
r̂r

4pR
dðr � RÞ; x2vðrÞ ¼ 4pRx1vðrÞ; ðA:1Þ

where R is the hard-sphere radius of the component. The weight functions x1v, x2v and their associated

densities n1v, n2v are treated as vector quantities. The Fourier transforms of these functions are:

~xx0ðkÞ ¼
sinðkRÞ
kR

; ~xx1ðkÞ ¼ R ~xx0ðkÞ; ~xx2ðkÞ ¼ 4pR2 ~xx0ðkÞ; ~xx3ðkÞ ¼ 4pR3
sinðkRÞ � kR cosðkRÞ

ðkRÞ3
;

~xx1vðkÞ ¼ �ik ~xx3ðkÞ
4pR

; ~xx2vðkÞ ¼ 4pR ~xx1vðkÞ; ðA:2Þ

where k ¼ jkj. Note that x1vðrÞ is � 1
4prx3ðrÞ.

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 197
The Rosenfeld functional Fhs is given by the following expression:

Fhs ¼
Z
d3r ðUs þ UvÞ; ðA:3Þ

where the scalar and vector contributions Us and Uv are local functions of the weighted densities na:

Us � n0 lnð1� n3Þ þ
n1n2
1� n3

þ 1

24p
n32

ð1� n3Þ2
;

Uv ¼ � n1v n2v
1� n3

� 1

8p
n2

n2v n2v
ð1� n3Þ2

:

ðA:4Þ

The first derivatives of U are:

oU
on0

¼ � lnð1� n3Þ;
oU
on1

¼ n2
1� n3

;

oU
on2

¼ n1
1� n3

þ 1

8p
n22

ð1� n3Þ2
� 1

8p
n2v n2v
ð1� n3Þ2

;

oU
on3

¼ n0
1� n3

þ n1n2
ð1� n3Þ2

þ 1

12p
n32

ð1� n3Þ3
� n1v n2v
ð1� n3Þ2

� 1

4p
n2

n2v n2v
ð1� n3Þ3

;

oU
on1v

¼ � n2v
1� n3

;
oU
on2v

¼ � n1v
1� n3

� 1

4p
n2

n2v
ð1� n3Þ2

:

ðA:5Þ

The 21 non-vanishing second derivatives (modulo symmetry) are:

o2U
on0on3

¼ 1

1� n3
;

o2U
on1on2

¼ 1

1� n3
;

o2U
on1on3

¼ n2
ð1� n3Þ2

;
o2U

on2on2
¼ 1

4p
n2

ð1� n3Þ2
;

o2U
on2on3

¼ n1
ð1� n3Þ2

þ 1

4p
n22

ð1� n3Þ3
� n2v n2v
ð1� n3Þ3

;
o2U

on2on2v
¼ � 1

4p
n2v

ð1� n3Þ2
;

o2U
on3on3

¼ n0
ð1� n3Þ2

þ n1n2
ð1� n3Þ3

þ 1

4p
n32

ð1� n3Þ4
� 2

n1v n2v
ð1� n3Þ3

� 3

4p
n2

n2v n2v
ð1� n3Þ4

;

o2U
on3on1v

¼ � n2v
ð1� n3Þ2

;
o2U

on3on2v
¼ � n1v

ð1� n3Þ2
� 1

2p
n2

n2v
ð1� n3Þ3

;

o2U
on1von2v

¼ � 1

1� n3
I;

o2U
on1von2v

¼ � 1

4p
n2

ð1� n3Þ2
I;

ðA:6Þ

where I is the unit tensor.
Appendix B. FFT method for convolutions

If the density components are periodic then the convolutions can be computed rapidly with FFT op-

erations. Let f be a periodic function in a (possibly non-orthogonal) unit cell defined by lattice vectors lx, ly ,
lz then f can be represented with a Fourier series

f ðxÞ ¼
X
k

f̂fk e
ixk; ðB:1Þ

198 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
where k is summed over points of the reciprocal space grid

kðix; iy ; izÞ ¼ ixgx þ iygy þ izgz: ðB:2Þ

Here the reciprocal lattice vectors are defined as gx ¼ 2p
V ly � lz, etc., where V is the volume of the unit cell

lx ly � lz, and the sum occurs over all integers ix, iy , iz. If we truncate the representation for jixj6N=2, etc.
then the discrete Fourier transform (implemented with the FFT algorithm) can be used to transform to and

from the representation on a real space grid

xðqx; qy ; qzÞ ¼
qx
Nx

lx þ
qy
Ny

ly þ
qz
Nz

lz; ðB:3Þ

where qx goes from 0 to Nx � 1, etc.

Inserting the representation of f ðxÞ into the convolution

~ff ðr0Þ ¼
Z
d3rxðr � r0Þf ðrÞ; ðB:4Þ

we obtain the relation

~̂ff~ff k ¼ x̂xðkÞf̂fk; ðB:5Þ

where x̂xk is the Fourier transform of x

x̂xðkÞ ¼
Z
d3rxðrÞe�irk: ðB:6Þ

Analytic expressions for x̂xðkÞ are given above. We can use the FFT algorithm to compute f̂fk even for a non-
orthogonal unit cell, and the inverse algorithm can be used to convert the product back to the real-space

mesh.
The evaluation of the weighted densities can therefore be accomplished with FFT operations using the

real space grid representation of the densities together with the analytic expressions for x̂xðkÞ. There is one
more important point to make here. Suppose we have Nw weight functions (10 for the Rosenfeld functional)

and there are Nc density components. Then naively we might suppose that the evaluation of the weighted
densities would require NwNc transform operations. In fact they can be constructed with Nw þ Nc trans-

forms.

This is accomplished by looping over the components. For each density component qi we compute its

FFT q̂qi and then add x̂xc
aq̂qi to n̂na. After the loop over components is complete we apply the inverse FFT to

each n̂na to obtain the weighted densities on the real-space mesh.

As noted above, some care must be taken to perform convolutions with vector valued weight functions.
Appendix C. Interaction and wall potentials

The most commonly used interaction potential between two components i, j is the 12-6 Lennard–Jones
(LJ) interaction potential given by

U lj
ijðrÞ ¼ 4�ij

rij

r

 �12�
� rij

r

 �6�
: ðC:1Þ

The interaction energy and diameter can be specified (symmetrically) for each pair of components or by

means of Lorentz–Berthelot mixing rules which determine the interaction energy and diameter in terms of

M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200 199
parameters specified for each component, thus rij ¼ 1
2
ðri þ rjÞ and �ij ¼

ffiffiffiffiffiffiffiffiffiffiffi
ð�i�jÞ

p
where �i and ri are the

energy and diameter parameters associated with component i.
In order to use this interparticle potential as a mean field perturbation to the hard-sphere fluid, we must

somehow cutoff the repulsive part of the potential at small r. In addition, to accurately treat the long-range
part of the potential at large r we must cut and shift the potential. We therefore take as the attractive
potential the Weeks–Chandler–Anderson [15] split of a cut-and-shifted version of Eq. (C.1). We then have

for the potential Uij

UijðrÞ ¼
U lj

ijðrminÞ � Dij r6 rmin;
U lj

ijðrÞ � Dij rmin < r < rcut;
0 rP rcut;

8<
: ðC:2Þ

where rmin is defined by the minimum of U lj
ij and rcut is some suitable cutoff distance. The shift Dij is given by

U lj
ijðrcutÞ and should be small. The resulting function is continuous and has a finite range, but there is a small

jump in the derivative at rcut. The Fourier transform of this function is required for the computation of the

residual and Jacobian operator; this is computed numerically on a fine one-dimensional mesh and then
interpolated onto the problem mesh.

A Lennard–Jones potential can also be used to build a realistic representation of some environment that

the fluid interacts with, by smearing the potential over a volume of interest. If this volume is taken to be a

slab then we get a 9-3 potential

UðzÞ ¼ 8p�
1

90

r
z

 �9�
� 1

12

r
z

 �3�
; ðC:3Þ

where z here is the distance to the wall and �, r are defined as before in terms of parameters for a wall

material and a fluid material. The potential inside the wall is infinite and very large just outside the wall; we

handle this in the code by clamping the density to zero for z < zmin.
This approach can be generalized to define boundary conditions of almost arbitrary complexity. If the

potential defined by Eq. (C.1) is cutoff by setting it to a constant for r < rcut then we can convolve it with a
body shape defined by simple geometric primitives (e.g., slabs, cylinders, and spheres) using the FFT
convolution method to define the external field for the problem. Note that cutoff is essential, otherwise the

convolution can not be defined.

For the calculations performed above with a 9-3 wall (see Fig. 5) we only have a single component.

In scaled units, where kT ¼ 1 and the hard-sphere diameter is 1 we have � ¼ 4:7933 and r ¼ :562. The
parameters for the wall are �wall ¼ 19:17 and rwall ¼ :562, chosen to match the results in [8].
References

[1] L.J.D. Frink, A.G. Salinger, Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids i.

Algorithms and parallelization, J. Comput. Phys. 159 (2) (2000) 407–424.

[2] L.J.D. Frink, A.G. Salinger, Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids ii. Solvated

polymers as a benchmark problem, J. Comput. Phys. 159 (2) (2000) 425–439.

[3] A.G. Salinger, L.J.D. Frink, Rapid analysis of phase behavio with density functional theory I, J. Chem. Phys. 16 (118) (2003)

7457–7465.

[4] L.J.D. Frink, A. Thompson, A.G. Salinger, Applying molecular theory to steady-state diffusing systems, J. Chem. Phys. 112 (17)

(2000) 7564–7571.

[5] L.J.D. Frink, A.G. Salinger, M.P. Sears, J.D. Weinhold, A.L. Frischknecht, Numerical challenges in the application of density

functional theory to biology and nanotechnology, J. Phys. Cond. Matter 46 (14) (2002) 12167–12187.

[6] D. Henderson (Ed.), Fundamentals of Inhomogeneous Fluids, Marcel Dekker, New York, 1992.

[7] S.A. Hutchinson, L.B. Prevost, R.S. Tuminaro, J.N. Shadid, Aztec User�s Guide: Version 2.0. Technical Report, Sandia National
Laboratories, 1998.

200 M.P. Sears, L.J.D. Frink / Journal of Computational Physics 190 (2003) 184–200
[8] E. Kierlik, M.L. Rosinberg, Free energy density functional for the inhomogeneous hard-sphere fluid: application to interfacial

adsorption, Phys. Rev. A 42 (6) (1990) 3382–3387.

[9] L.J.D. Frink, A.G. Salinger, J. Chem. Phys. 110 (1999) 5969–5977.

[10] P. Rocken, A. Somoza, P. Tarazona, G. Findenegg, J. Chem. Phys. 108 (1998) 8689–8697.

[11] P. Rocken, P. Tarazona, J. Chem. Phys. 105 (1996) 2034–2043.

[12] Y. Rosenfeld, Free energy model for the inhomogeneous hard-sphere fluid mixture and density functional theory of freezing, Phys.

Rev. Lett. 63 (9) (1989) 980–983.

[13] Y. Rosenfeld, Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and

plasmas, J. Chem. Phys. 98 (10) (1993) 8126–8148.

[14] Y. Saad, M.H. Schultz, Gmres: a generalized minimal residual algorithm for solving nonlinear linear systems, SIAM J. Sci. Stat.

Comp. 7 (3) (1986) 856–869.

[15] J.D. Weeks, H.C. Anderson, J. Chem. Phys. 54 (1971).

	A new efficient method for density functional theory calculations of inhomogeneous fluids
	Introduction
	The free energy functional
	A matrix-free Newton’s method
	Overview of the algorithm
	Computing the residuals
	Computing the operational Jacobian
	Iterative solution with GMRES and preconditioning

	Example problems
	Convergence and performance
	Conclusions
	Rosenfeld functional
	FFT method for convolutions
	Interaction and wall potentials
	References

